Vinogradov’s Mean Value Theorem via Efficient Congruencing, Ii

نویسنده

  • TREVOR D. WOOLEY
چکیده

We apply the efficient congruencing method to estimate Vinogradov’s integral for moments of order 2s, with 1 6 s 6 k − 1. Thereby, we show that quasi-diagonal behaviour holds when s = o(k), we obtain near-optimal estimates for 1 6 s 6 1 4k 2 + k, and optimal estimates for s > k − 1. In this way we come half way to proving the main conjecture in two different directions. There are consequences for estimates of Weyl type, and in several allied applications. Thus, for example, the anticipated asymptotic formula in Waring’s problem is established for sums of s kth powers of natural numbers whenever s > 2k − 2k − 8 (k > 6).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Vinogradov’s Mean Value Theorem: Strongly Diagonal Behaviour via Efficient Congruencing

We enhance the efficient congruencing method for estimating Vinogradov’s integral for moments of order 2s, with 1 6 s 6 k− 1. In this way, we prove the main conjecture for such even moments when 1 6 s 6 1 4 (k+1) , showing that the moments exhibit strongly diagonal behaviour in this range. There are improvements also for larger values of s, these finding application to the asymptotic formula in...

متن کامل

Vinogradov’s Mean Value Theorem via Efficient Congruencing

We obtain estimates for Vinogradov’s integral which for the first time approach those conjectured to be the best possible. Several applications of these new bounds are provided. In particular, the conjectured asymptotic formula in Waring’s problem holds for sums of s kth powers of natural numbers whenever s > 2k + 2k − 3.

متن کامل

Approximating the Main Conjecture in Vinogradov’s Mean Value Theorem

We apply multigrade efficient congruencing to estimate Vinogradov’s integral of degree k for moments of order 2s, establishing strongly diagonal behaviour for 1 6 s 6 1 2 k(k + 1) − 1 3 k + o(k). In particular, as k → ∞, we confirm the main conjecture in Vinogradov’s mean value theorem for 100% of the critical interval 1 6 s 6 1 2 k(k + 1).

متن کامل

Multigrade Efficient Congruencing and Vinogradov’s Mean Value Theorem

We develop a substantial enhancement of the efficient congruencing method to estimate Vinogradov’s integral of degree k for moments of order 2s, thereby obtaining for the first time near-optimal estimates for s > 5 8k . There are numerous applications. In particular, when k is large, the anticipated asymptotic formula in Waring’s problem is established for sums of s kth powers of natural number...

متن کامل

The Cubic Case of the Main Conjecture in Vinogradov’s Mean Value Theorem

We apply a variant of the multigrade efficient congruencing method to estimate Vinogradov’s integral of degree 3 for moments of order 2s, establishing strongly diagonal behaviour for 1 6 s 6 6. Consequently, the main conjecture is now known to hold for the first time in a case of degree exceeding 2.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013